Abstract

Conformational rearrangements are key to the function of riboswitches. These regulatory mRNA regions specifically bind to cellular metabolites using evolutionarily conserved sensing domains and modulate gene expression via adjacent downstream expression platforms, which carry gene expression signals. The regulation is achieved through the ligand-dependent formation of two alternative and mutually exclusive conformations involving the same RNA region. While X-ray crystallography cannot visualize dynamics of such dramatic conformational rearrangements, this method is pivotal to understand RNA-ligand interaction that stabilize the sensing domain and drive folding of the expression platform. X-ray crystallography can reveal local changes in RNA necessary for discriminating cognate and noncognate ligands. This chapter describes preparation of thiamine pyrophosphate riboswitch RNAs and its crystallization with different ligands, resulting in structures with local conformational changes in RNA. These structures can help to derive information on the dynamics of the RNA essential for specific binding to small molecules, with potential for using this information for developing designer riboswitch-ligand systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.