Abstract

One of the major processes for aerobic biodegradation of aromatic compounds is initiated by Rieske dioxygenases. Benzoate dioxygenase contains a reductase component, BenC, that is responsible for the two-electron transfer from NADH via FAD and an iron–sulfur cluster to the terminal oxygenase component. Here, we present the structure of BenC from Acinetobacter sp. strain ADP1 at 1.5 Å resolution. BenC contains three domains, each binding a redox cofactor: iron–sulfur, FAD and NADH, respectively. The [2Fe–2S] domain is similar to that of plant ferredoxins, and the FAD and NADH domains are similar to members of the ferredoxin:NADPH reductase superfamily. In phthalate dioxygenase reductase, the only other Rieske dioxygenase reductase for which a crystal structure is available, the ferredoxin-like and flavin binding domains are sequentially reversed compared to BenC. The BenC structure shows significant differences in the location of the ferredoxin domain relative to the other domains, compared to phthalate dioxygenase reductase and other known systems containing these three domains. In BenC, the ferredoxin domain interacts with both the flavin and NAD(P)H domains. The iron–sulfur center and the flavin are about 9 Å apart, which allows a fast electron transfer. The BenC structure is the first determined for a reductase from the class IB Rieske dioxygenases, whose reductases transfer electrons directly to their oxygenase components. Based on sequence similarities, a very similar structure was modeled for the class III naphthalene dioxygenase reductase, which transfers electrons to an intermediary ferredoxin, rather than the oxygenase component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.