Abstract

The vaccinia virus protein K3L subverts the mammalian antiviral defense mechanism by inhibiting the RNA-dependent protein kinase PKR. K3L is a structural mimic of PKR's natural substrate, the translation initiation factor eIF2α. To further our understanding of K3L inhibitory function and PKR substrate recognition, we have solved the 1.8 Å X-ray crystal structure of K3L. The structure consists of a five-strand β barrel with an intervening helix insert region similar in topology to the functionally divergent S1 domain. Mutational analysis identifies two proximal regions of the K3L structure as possessing specialized PKR binding and inhibitory function. Further analysis reveals that PKR dimerization composes a key switch that regulates both its catalytic activation and its molecular recognition of K3L and eIF2α.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.