Abstract

A reconstruction algorithm for partially coherent x-ray computed tomography (XCT) including Fresnel diffraction is developed and applied to an optical fiber. The algorithm is applicable to a high-resolution tube-based laboratory-scale x-ray tomography instrument. The computing time is only a few times longer than the projective counterpart. The algorithm is used to reconstruct, with projections and diffraction, a tilt series acquired at the micrometer scale of a graded-index optical fiber using maximum likelihood and a Bayesian method based on the work of Bouman and Sauer. The inclusion of Fresnel diffraction removes some reconstruction artifacts and use of a Bayesian prior probability distribution removes others, resulting in a substantially more accurate reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.