Abstract

As a non-invasive imaging technique, this study explores the application of Computed Tomography (CT) in microplastics research, assessing its potential to distinguish different types and sizes of microplastics (polypropylene, polyethylene terephthalate, polyethylene, and polyvinyl chloride) from homogenised river-estuarine sediment. When examined in layers within artificial cores, all microplastic types could be observed by CT imagery, with good contrast in X-ray attenuation (based on image gray level intensity) against background sediments. Large microplastics (4 mm diameter) were also detectable when distributed randomly amongst the sediment. These spiked cores had sufficient difference in attenuation to allow segmentation between type, and therefore isolate individual microplastics. Due to limitations on scan resolution, smaller microplastics (≤125 μm diameter) could not be detected in spiked cores. Scans of two sediment cores from a Thames River tributary (UK) revealed two distinctive sediment structures which could influence microplastic accumulation. This information would be lost using conventional recovery procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call