Abstract

AbstractEcto‐5′‐nucleotidase (CD73, EC 3.1.3.5) catalyzes the extracellular hydrolysis of AMP yielding adenosine, which induces immunosuppression, angiogenesis, metastasis, and proliferation of cancer cells. CD73 inhibition is therefore proposed as a novel strategy for cancer (immuno)therapy, and CD73 antibodies are currently undergoing clinical trials. Despite considerable efforts, the development of small molecule CD73 inhibitors has met with limited success. To develop a suitable drug candidate, a high resolution (2.05 Å) co‐crystal structure of the CD73 inhibitor PSB‐12379, a nucleotide analogue, in complex with human CD73 is determined. This allows the rational design and development of a novel inhibitor (PSB‐12489) with subnanomolar inhibitory potency toward human and rat CD73, high selectivity, as well as high metabolic stability. A co‐crystal structure of PSB‐12489 with CD73 (1.85 Å) reveals the interactions responsible for increased potency. PSB‐12489 is the most potent CD73 inhibitor to date representing a powerful tool compound and novel lead structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call