Abstract

Additive manufacturing and 3D printing are widely used in medical imaging to produce phantoms for image quality optimization, imaging protocol definition, comparison of image quality between different imaging systems, dosimetry, and quality control. Anthropomorphic phantoms mimic tissues and contrasts in real patients with regard to X-ray attenuation, as well as dependence on X-ray spectra. If used with different X-ray energies, or to optimize the spectrum for a certain procedure, the energy dependence of the attenuation must replicate the corresponding energy dependence of the tissues mimicked, or at least be similar. In the latter case the materials’ Hounsfield values need to be known exactly to allow to correct contrast and contrast to noise ratios accordingly for different beam energies. Fresh bovine and porcine tissues including soft and adipose tissues, and hard tissues from soft spongious bone to cortical bone were scanned at different energies, and reference values of attenuation in Hounsfield units (HU) determined. Mathematical model equations describing CT number dependence on kV for bones of arbitrary density, and for adipose tissues are derived. These data can be used to select appropriate phantom constituents, compare CT values with arbitrary phantom materials, and calculate correction factors for phantoms consisting of materials with an energy dependence different to the tissues. Using data on a wide number of additive manufacturing and 3D printing materials, CT numbers and their energy dependence were compared to those of the tissues. Two commercially available printing filaments containing calcium carbonate powder imitate bone tissues with high accuracy at all kV values. Average adipose tissue can be duplicated by several off-the-shelf printing polymers. Since suitable printing materials typically exhibit a too high density for the desired attenuation of especially soft tissues, controlled density reduction by underfilling might improve tissue equivalence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.