Abstract

X-ray investigations revealed that the increase in the applied pressure during high pressure torsion (HPT) of commercially pure Ti leads not only to substructure refinement with an increase of the dislocation density and microstrain level but also to an α→ ω phase transition at room temperature. The coexistence of both α and ω phases, the latter known as a high pressure phase, in the ratio approximately of 1:3 has been obtained after removal of thehigh pressure. Texture analysis of electodeposited Ni after HPT discovered a new form of crystallite orientation distribution in the nanocrystalline state. A nearly random orientation crystallite distribution has been observed unlike the “traditional” case of a shear texture forming in cubic symmetry metals. The crystallographic texture data obtained were considered as experimental evidence of the changed plastic deformation mechanisms in nanocrystalline Ni produced by HPT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.