Abstract

This paper presents an experimental investigation of the local structure of porous silicon based on X-ray absorption fine structure by two different techniques: Total electron yield (TEY) and X-ray excited optical luminescence (XEOL). The influence of the main parameters of sample preparation on both the photoluminescence and the local structure around Si atoms has been investigated. The dependence of the optical emission energy on the current density shows a saturation limit. The analysis of both the optical emission and the short range order (up to the third coordination shell) confirms the presence of crystalline cores on a scale of a few nanometers in freshly prepared porous silicon samples. Although the local structural parameters obtained by TEY are similar to those reported in recent X-ray absorption studies, a direct connection between optical emission energy and short range order has not always been found. In particular, while the role of HF concentration in determining optical and microstructural properties is clear, a change of current density affects the energy shift of the X-ray excited optical band but not the short range order properties monitored by TEY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.