Abstract

Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate the electronic structure of a variety of porphyrins and phthalocyanines. As a biological model system we use the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption spectroscopy of the N 1s and C 1s edges reveals the unoccupied molecular orbitals and the orientation of the molecules in thin films. The transition metal 2p edges reflect the oxidation state of the central metal atom, its spin state, and the ligand field of the surrounding N atoms. The latter allows tuning of the energy position of the lowest unoccupied orbital by several tenths of an eV by tailoring the molecules and their deposition. Fe and Mn containing phthalocyanines oxidize easily from +2 to +3 in air and require vacuum deposition for obtaining a reproducible oxidation state. Chlorinated porphyrins, on the other hand, are reduced from +3 to +2 during vacuum deposition at elevated temperatures. These findings stress the importance of controlled thin film deposition for obtaining photovoltaic devices with an optimum match between the energy levels of the dye and those of the donor and acceptor electrodes, together with a molecular orientation for optimal overlap between the pi orbitals in the direction of the carrier transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.