Abstract

Multi-legged piezoelectric single-crystal actuators with small footprints using an X-pod approach, namely, the Tripod and Tetrapod, have been conceptualized, each leg being a unimorph driven by Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 (PZN–(6–7)%PT) single crystals of [110]L × [001]T cut. Both finite-element analysis and experimental investigations are carried out to evaluate the performance of the Tripod and Tetrapod actuators. When operated at 0.57 kV mm−1, both actuators exhibit an axial displacement of nearly 60 µm. Blocking forces of about 10 N and 14 N are observed for the Tripod and the Tetrapod, respectively. The blocking forces are roughly doubled if the perfectly clamped condition is imposed for the legs at the pedestal end while the axial displacement is lowered marginally by 12%. In addition to small footprints, other attractive features of the actuators include greater flexibility to modify the leg geometry and their inclination to suit the application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call