Abstract

An X pinch plasma is produced using two or more fine metal wires arranged so that they cross and touch at a single point, in the form of an X, as the load of a pulsed power generator (pulser). X pinches produce very bright, small, short-lived sources of X-rays in the 1-10 keV range. The X-ray source size, pulse duration and photon energy spectra depend upon the wire material and diameter, and the current waveform from the pulser. Those with /spl sim/1 /spl mu/m source size can be used as point sources of X-ray radiation for point-projection radiography with high spatial resolution. We report experiments with a variety of different wire materials, including Al, Ti, Mo, W, among others, all of which produced high resolution images, and all of which have subnanosecond X-ray pulses for X-rays /spl ges/3 keV. X pinches produced using all of these materials had common development stages. However, the wire material and the rate of rise of the current pulse influenced the details of the dynamics, leading to variation in the timing of the X-ray burst(s) relative to the start of the current pulse. For a given wire material, wire diameter had only a small effect on X-ray emission timing. Final X pinch neck implosion speeds as high as 66-75 /spl mu/m/ns were estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call