Abstract

Malformations of neuronal migration such as lissencephaly (agyria-pachygyria spectrum) are well-known causes of mental retardation and epilepsy that are often genetic. For example, isolated lissencephaly sequence and Miller-Dieker syndrome are caused by deletions involving a lissencephaly gene in chromosome 17p13.3, while many other malformation syndromes have autosomal recessive inheritance. In this paper, we review evidence supporting the existence of two distinct X-linked malformations of neuronal migration. X-linked lissencephaly and subcortical band heterotopia (XLIS) presents with sporadic or familial mental retardation and epilepsy. The brain malformation varies from classical lissencephaly, which is observed in males, to subcortical band heterotopia, which is observed primarily in females. The XLIS gene is located in chromosome Xq22.3 based on the breakpoint of an X-autosomal translocation. Bilateral periventricular nodular heterotopia (BPNH) usually presents with sporadic or familial epilepsy with normal intelligence, primarily in females, although we have evaluated two boys with BPNH and severe mental retardation. The gene for BPNH has been mapped to chromosome Xq28 based on linkage studies in multiplex families and observation of a subtle structural abnormality in one of the boys with BPNH and severe mental retardation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.