Abstract

This study investigated the impact of magnetic mesoporous silica nanoparticles (MMSN)-encapsulated X-linked inhibitor of apoptosis protein (XIAP) and miR-233 on tumor microenvironment in cervical cancer, to provide targeted treatment and strategy, to improve radio sensitization of cancer cells. Cervical cancer cells were treated with normal saline (control group), XIAP-loaded metallic mesoporous silica nanoparticles (MMSNs), and miR-233-targeted material (XIAP group, XIAP+miR-233 group). Proliferation, apoptosis and colony forming ability of cancer cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method, flow cytometry and colony formation experiments. In vivo experiments were established to observe the impact of XIAP-loaded MMSNs and miR-233 on tumor growth. Administration of XIAP-loaded MMSNs suppressed tumor growth of cervical cancer, and presence of miR-233 targeted material further decreased tumor volume, increasing radio sensitization of cancer cells. In vitro experiments confirmed that, combined treatment of XIAP and miR-233 suppressed cancer cell proliferation and invasion when inducing apoptosis. XIAP MMSNs characterized by large unit surface area, high dispersion and adhesion, and prolonged circulation time, improving drug delivery and treatment selectivity of chemotherapeutic drugs. This study suggests that XIAP MMSNs with miR-233 material suppress cervical cancer cell progression and tumor growth when augmenting radiosensitization of cancer cells, providing evidence for targeted therapy for the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call