Abstract

Previous in vitro studies have shown that X-irradiation during early postnatal life can change the environment of CNS tissue in later adult life such that it becomes more supportive of neurite regeneration from adult dorsal root ganglion (DRG) neurons than non-irradiated tissue. The question arises whether or not x-irradiation during adult life can alter the CNS environment such that it also becomes more supportive of neurite regeneration. This was investigated by exposing portions of the spinal cord of adult rats to 10, 20 or 40 Gray of X-irradiation and later using this tissue to prepare cryosections suitable for use as a substrate in a cryoculture assay. Fixed cryocultures were immunolabelled using anti-glial fibrillary acidic protein (GFAP) to visualise the tissue sections and anti-growth associated protein (GAP-43) to visualise the regenerating neurites. Tissue sections from sham-irradiated animals and from those irradiated with 10 Gray did not support the regeneration of neurites. However, sections of spinal cords from rats treated with either 20 or 40 Gray of X-irradiation 4 or 32 days prior to sampling were found to support a certain degree of neurite regeneration. It is concluded that X-irradiation of adult CNS tissue can alter its environment such that it becomes more supportive of neurite regeneration and it is speculated that this change may be the result of alterations in the glial cell populations in the post-irradiated tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.