Abstract

The effects of X-irradiation on proliferating cells in the dentate subgranular zone were assessed in young adult Fisher 344 rats exposed to a range of X-ray doses and followed for up to 120 days. Apoptosis was quantified using morphology and end-labeling immunohistochemistry, and cell proliferation was detected using antibodies against the thymidine analog BrdU and the cyclin-dependent kinase p34 cdc2. Radiation-induced apoptosis occurred rapidly, with maximum morphological and end-labeling changes observed 3–6 h after irradiation. Twenty-four hours after irradiation cell proliferation was significantly reduced relative to sham-irradiated controls. The number of apoptotic nuclei increased rapidly with radiation dose, reaching a plateau at about 3 Gy. The maximum number of apoptotic nuclei was substantially higher than the number of proliferating cells, suggesting that non-proliferating as well as proliferating cells in the subgranular zone were sensitive to irradiation. Subgranular zone cell proliferation was significantly reduced relative to age-matched controls 120 days after doses of 5 Gy or higher. These findings suggest that neural precursor cells of the dentate gyrus are very sensitive to irradiation and are not capable of repopulating the subgranular zone at least up to 120 days after irradiation. This may help explain, in part, how ionizing irradiation induces cognitive impairments in animals and humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.