Abstract
Frequent similar pattern mining (FSP mining) allows for finding frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, necessitating the development of more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection, named FV-Tree , and an algorithm for mining all FSPs from the FV-Tree , named X-FSPMiner , are proposed. The experimental results reveal that the novel algorithm X-FSPMiner vastly outperforms the state-of-the-art algorithms for mining all FSPs using Boolean and non-increasing monotonic similarity functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.