Abstract

A number of X···F (X=C, N, O and S) noncovalent weak intermolecular interaction systems of CH3-F···XO2 (X=C, N, O and S) has been investigated at B3LYP/6-311++G(d, p) computational level. A topological analysis of the electron density for the X···F (X=C, N, O and S) noncovalent weak bonds was performed using Baders theory of atom-in-molecules (AIM). The interaction content of the F···X in H3CF···CO2 complex would mainly represent more π property than others. The interaction energies data without (ΔE) and with (ΔEcp) BSSE correction showed that the stability of the four complexes of the H3CF···DB2 system increases in the order of H3CF···O3 < H3CF···NO2 < H3CF···CO2 < H3CF···SO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.