Abstract

Artificial muscles are promising in soft exoskeletons, locomotion robots, and operation machines. However, their performance in contraction ratio, output force, and dynamic response is often imbalanced and limited by materials, structures, or actuation principles. We present lightweight, high-contraction ratio, high-output force, and positive pressure-driven X-crossing pneumatic artificial muscles (X-PAMs). Unlike PAMs, our X-PAMs harness the X-crossing mechanism to directly convert linear motion along the actuator axis, achieving an unprecedented 92.9% contraction ratio and an output force of 207.9 Newtons per kilogram per kilopascal with excellent dynamic properties, such as strain rate (1603.0% per second), specific power (5.7 kilowatts per kilogram), and work density (842.9 kilojoules per meter cubed). These properties can overcome the slow actuation of conventional PAMs, providing robotic elbow, jumping robot, and lightweight gripper with fast, powerful performance. The robust design of X-PAMs withstands extreme environments, including high-temperature, underwater, and long-duration actuation, while being scalable to parallel, asymmetric, and ring-shaped configurations for potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.