Abstract

BackgroundEndothelial cells (ECs) play an important role in angiogenesis and vascular reconstruction in the pathophysiology of ischemic stroke. Previous investigations have provided a profound cerebral vascular atlas under physiological conditions, but have failed to identify new disease-related cell subtypes. We aimed to identify new EC subtypes and determine the key modulator genes.MethodsTwo datasets GSE174574 and GSE137482 were included in the study. Seurat was utilized as the standard quality-control pipeline. UCell was used to calculate single-cell scores to validate cellular identity. Monocle3 and CytoTRACE were utilized in aid of pseudo-time differentiation analysis. CellChat was utilized to infer the intercellular communication pathways. The angiogenesis ability of ECs was validated by MTS, Transwell, tube formation, flow cytometry, and immunofluorescence assays in vitro and in vivo. A synchrotron radiation-based propagation contrast imaging was introduced to comprehensively portray cerebral vasculature.ResultsWe successfully identified a novel subtype of EC named “healing EC” that highly expressed pan-EC marker and pro-angiogenic genes but lowly expressed all the arteriovenous markers identified in the vascular single-cell atlas. Further analyses showed its high stemness to differentiate into other EC subtypes and potential to modulate inflammation and angiogenesis via excretion of signal molecules. We therefore identified X-box binding protein 1 (Xbp1) as a key modulator in the healing EC phenotype. In vitro and in vivo experiments confirmed its pro-angiogenic roles under both physiological and pathological conditions. Synchrotron radiation-based propagation contrast imaging further proved that Xbp1 could promote angiogenesis and recover normal vasculature conformation, especially in the corpus striatum and prefrontal cortex under middle cerebral artery occlusion (MCAO) condition.ConclusionsOur study identified a novel disease-related EC subtype that showed high stemness to differentiate into other EC subtypes. The predicted molecule Xbp1 was thus confirmed as a key modulator that can promote angiogenesis and recover normal vasculature conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call