Abstract
X-band weather radar can provide high spatial and temporal resolution data, which is essential to precipitation observation and prediction of mesoscale and microscale weather. However, X-band weather radar is susceptible to precipitation attenuation. This paper presents an X-band attenuation correction method based on the light gradient machine (LightGBM) algorithm (the XACL method), then compares it with the ZH correction method and the ZH-KDP comprehensive correction method. The XACL method was validated using observations from two radars in July 2021, the X-band dual-polarization weather radar at the Shouxian National Climatology Observatory of China (SNCOC), and the S-band dual-polarization weather radar at Hefei. During the rainfall cases on July 2021, the results of the attenuation correction were used for precipitation estimation and verified with the rainfall data from 1204 automatic ground-based meteorological network stations in Anhui Province, China. We found that the XACL method produced a significant correction effect and reduced the anomalous correction phenomenon of the comparison methods. The results show that the average error in precipitation estimation by the XACL method was reduced by 39.88% over 1204 meteorological stations, which is better than the effect of the other two correction methods. Thus, the XACL method proved good local adaptability and provided a new X-band attenuation correction scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.