Abstract

Vision language pre-training aims to learn alignments between vision and language from a large amount of data. Most existing methods only learn image-text alignments. Some others utilize pre-trained object detectors to leverage vision language alignments at the object level. In this paper, we propose to learn multi-grained vision language alignments by a unified pre-training framework that learns multi-grained aligning and multi-grained localization simultaneously. Based on it, we present X 2-VLM, an all-in-one model with a flexible modular architecture, in which we further unify image-text pre-training and video-text pre-training in one model. X 2-VLM is able to learn unlimited visual concepts associated with diverse text descriptions. Experiment results show that X 2-VLM performs the best on base and large scale for both image-text and video-text tasks, making a good trade-off between performance and model scale. Moreover, we show that the modular design of X 2-VLM results in high transferability for it to be utilized in any language or domain. For example, by simply replacing the text encoder with XLM-R, X 2-VLM outperforms state-of-the-art multilingual multi-modal pre-trained models without any multilingual pre-training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.