Abstract

Most submarines use the cross-plane, which is convenient and inexpensive, but the number of submarines equipped with an X-plane is increasing recently. This study focuses on designing the control system of the X-plane submarine with various control methods and analyzing the effect of each controller. First, a maneuvering simulation environment for a subjected submarine is established. The dynamics and the operating range of control surfaces are considered. Second, a depth and heading control system of the submarine, which can be divided into three parts, is designed: guidance, controller, and control allocation. The guidance system generates a smooth desired depth and heading. The controller is designed using Proportional-Integral-Differential (PID), Linear Quadratic Regulator (LQR), and H-infinity (H∞) control methods. A linear control allocation method is used to distribute control moment calculated by the controller to the control surfaces. Finally, the designed control system is applied to a subjected X-plane submarine, and a depth and heading control simulations are performed. Each control method is compared and analyzed under various simulation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.