Abstract
Alzheimer's disease (AD) is a type of dementia that affects the elderly population. A machine learning (ML) system has been trained to recognize particular patterns to diagnose AD using an algorithm in an ML system. As a result, developing a feature extraction approach is critical for reducing calculation time. The input image in this article is a Two-Dimensional Discrete Wavelet (2D-DWT). The Time-Dependent Power Spectrum Descriptors (TD-PSD) model is used to represent the subbanded wavelet coefficients. The principal property vector is made up of the characteristics of the TD-PSD model. Based on classification algorithms, the collected characteristics are applied independently to present AD classifications. The categorization is used to determine the kind of tumor. The TD-PSD method was used to extract wavelet subbands features from three sets of test samples: moderate cognitive impairment (MCI), AD, and healthy controls (HC). The outcomes of three modes of classic classification methods, including KNN, SVM, Decision Tree, and LDA approaches, are documented, as well as the final feature employed in each. Finally, we show the CNN architecture for AD patient classification. Output assessment is used to show the results. Other techniques are outperformed by the given CNN and DT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.