Abstract

WT1 encodes a tissue-specific transcription factor important in early mesenchymal differentiation. Altered expression or mutation of WT1 occurs in malignancies derived from such tissues. These include Wilms tumour, a paediatric kidney cancer that may show heterologous differentiation into primitive skeletal muscle, especially in tumours with WT1 mutation. A putative role for WT1 in inhibiting myogenesis has been suggested by transient transfection of C 2C 12 myoblasts. However, using a more robust model of stable transfectants of C 2C 12 expressing inducible WT1 isoforms, we found no inhibition of myogenic differentiation. We also investigated a possible role for WT1 in the disrupted myogenesis seen in rhabdomyosarcoma, a paediatric cancer resembling foetal skeletal muscle. WT1 expression levels measured by quantitative real-time reverse transcription polymerase chain reaction were low or absent in those tumours with a PAX-FKHR fusion gene characteristic of the alveolar subtype, and were higher in cases lacking these fusion genes. Overall, there was a weak positive correlation between expression of myogenic differentiation marker genes and WT1 levels. We conclude that expression of WT1 in C 2C 12 cells and in rhabdomyosarcoma does not inhibit myogenic differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call