Abstract

One of the most relevant features that a semiconducting channel material can offer when used in a field-effect transistor (FET) layout is its capability to enable both electron transport in the conduction band and hole transport in the valence band. In this way, complementary metal-oxide-semiconductor type applications become feasible once similar electron and hole drive current densities are achieved, and the threshold voltages are properly adjusted. In this article, we demonstrate pronounced ambipolar device characteristics of multilayer WSe2 FETs using different contact electrodes. Our study reveals that nickel electrodes facilitate electron injection while palladium electrodes are more efficient for hole injection. We also show, as an interesting demonstration, that by using nickel as the source contact electrode and palladium as the drain contact electrode, ambipolar device characteristics with similar on-state performance for both the electron and the hole branch can be achieved in WSe2 FETs. Finally, we discuss a unique technique based on the asymmetry in the ambipolar device characteristics to extract the Schottky barrier heights for such metal to WSe2 contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.