Abstract
Independent control of carrier density and out-of-plane displacement field is essential for accessing novel phenomena in two-dimensional (2D) material heterostructures. While this is achieved with independent top and bottom metallic gate electrodes in transport experiments, it remains a challenge for near-field optical studies as the top electrode interferes with the optical path. Here, we characterize the requirements for a material to be used as the top-gate electrode and demonstrate experimentally that few-layer WSe2 can be used as a transparent, ambipolar top-gate electrode in infrared near-field microscopy. We carry out nanoimaging of plasmons in a bilayer graphene heterostructure tuning the plasmon wavelength using a trilayer WSe2 gate, achieving a density modulation amplitude exceeding 2 × 1012 cm-2. The observed ambipolar gate-voltage response allows us to extract the energy gap of WSe2, yielding a value of 1.05 eV. Our results provide an additional tuning knob to cryogenic near-field experiments on emerging phenomena in 2D materials and moiré heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.