Abstract

In millimeter wave (mmWave) communication systems, Channel State Information(CSI) is extremely essential for beamforming. The traditional Successive Support Detection (SSD) algorithm can achieve high wideband channel estimation accuracy, but it only used least square (LS) algorithm to recover the detected channel part, the estimation accuracy is low under low SNR regions. To tackle this problem, in this paper, inspired by the classic Support Detection (SD) channel estimation scheme in narrowband, we propose an efficient Wideband Support Detection Sparse Bayesian Learning (WSDSBL) channel estimation scheme. For every subcarrier, we first detect the support of the wideband beamspace channel of the subcarrier, then we use the Sparse Bayesian Learning (SBL) scheme to recover it. Simulation results show that the proposed WSDSBL channel estimation algorithm is better than conventional wideband channel estimation schemes in MSE performance and achievable sum-rate performance, especially in low SNR regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.