Abstract

When dealing with a Wireless Sensor and Actuator Network (WSAN) structure, one of the challenging problems is lack of flexibility in such network operations as establishment, management, and configuration. Software-defined Networking (SDN) is a promising technology for a simpler, more flexible, and less overworked network structure. Integration of SDN as a solution into the existing WSAN structures seems to be a strong candidate of deployment solutions for next generation WSAN systems. In order to get enhanced performance results for WSAN systems, we proposed an interface protocol, referred to as WSANFlow, which is responsible for all the communications between SDN controller (SDNC) and SDN-oriented end devices. The SDNC in this approach has the network intelligence and is capable of handling all the control and management operations related to the network. Thus, advanced communication operations can be managed and efficiently optimized efficiently by the SDN controller and then, subsequently, corresponding instructions can be delivered to end devices using the proposed WSANFlow protocol. In the study, we analyzed the proposed framework performance, in terms of power consumption ratio, throughput, and end to end delay metrics. Then, we compared the results with those of a ZigBee-based counterpart for different workloads such as; light, heavy and heavier load which modelizes a video stream of mild parameters. The results show that not only has the overall performance of the existing WSAN system been enhanced, but also control and management operations have been simplified by the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call