Abstract
One of the crucial applications of IoT is developing smart cities via this technology. Smart cities are made up of smart components such as smart homes. In smart homes, a variety of sensors are used for making the environment smart, and the smart things, in such homes, can be used for detecting the activities of the people inside them. Detecting the activities of the smart homes’ users may include the detection of activities such as making food or watching TV. Detecting the activities of residents of smart homes can tremendously help the elderly or take care of the kids or, even, promote security issues. The information collected by the sensors could be used for detecting the kind of activities; however, the main challenge is the poor precision of most of the activity detection methods. In the proposed method, for reducing the clustering error of the data mining techniques, a hybrid learning approach is presented using Water Strider Algorithm. In the proposed method, Water Strider Algorithm can be used in the feature extraction phase and exclusively extract the main features for machine learning. The analysis of the proposed method shows that it has precision of 97.63 %, accuracy of 97. 12 %, and F1 index of 97.45 %. It, in comparison with similar algorithms (such as Butterfly Optimization Algorithm, Harris Hawks Optimization Algorithm, and Black Widow Optimization Algorithm), has higher precision while detecting the users’ activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.