Abstract

The structure, electronic properties, charge transfer, band edge alignments and optical properties of WS2/BSe heterostructures are investigated by using first-principle calculations. Results imply that WS2/BSe heterostructures are semiconductor with an indirect energy gap (Egap) of 1.73 eV. Additionally, it has a feature of type-II band alignment, which contributes to spatial separation of photo-generated electron-hole pairs in WS2/BSe heterostructures. Charge transfer takes place from BSe to WS2 monolayers, which extends lifetime of the separated photo-induced charge carriers. Most importantly, band edges of the heterostructure are found to meet hydrogen evolution reaction (HER) in acid solutions (0 < pH < 7). Moreover, compared with only one for WS2 and BSe monolayers, the optical-absorption strength of the heterostructure is significantly enhanced and WS2/BSe heterostructures larges the range of absorption to 717 nm in the visible light region, improving the potential photocatalytic efficiency. These results explain the underlying mechanism of the enhanced photocatalytic activity of WS2/BSe heterostructures. Thus WS2/BSe heterostructures can be applied to 2D heterostructured photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.