Abstract

Developing novel nanostructures and advanced nanotechnologies for cancer treatment has attracted ever-increasing interest. Electrothermal therapy offers many advantages such as high efficiency and minimal invasiveness, but finding a balance between increasing stability of the nanostructure state and, at the same time, enhancing the nanostructure biodegradability presents a key challenge. Here, we modulate the biodegradation process of two-dimensional-material-based nanostructures by using polyethylene glycol (PEG) via nanostructure disrupt-and-release effects. We then demonstrate the development of a previously unreported alternating current (AC) pulse WS2/PEG nanostructure system for enhancing therapeutic performance. A decrease in cell viability of ∼42% for MCF-7 cells with WS2/PEG was achieved, which is above an average of ∼25% for current electrothermal-based therapeutic methods using similar energy densities, as well as degradation time of the WS2 of ∼1 week, below an average of ∼3.5 weeks for state-of-the-art nanostructure-based systems in physiological media. Moreover, the incubation time of MCF-7 cells with WS2/PEG reached ∼24 h, which is above the average of ∼4.5 h for current electrothermal-based therapeutic methods and with the use of the amount of time harnessed to incubate the cells with nanostructures before applying a stimulus as a measure of incubation time. Material characterizations further disclose the degradation of WS2 and the grafting of PEG on WS2 surfaces. These WS2-based systems offer strong therapeutic performance and, simultaneously, maintain excellent biodegradability/biocompatibility, thus providing a promising route for the ablation of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call