Abstract
The Wronski map is a finite, PGL_2(C)-equivariant morphism from the Grassmannian Gr(d,n) to a projective space (the projectivization of a vector space of polynomials). We consider the following problem. If C_r < PGL_2(C) is a cyclic subgroup of order r, how may C_r-fixed points are in the in a fibre of the Wronski map over a C_r-fixed point in the base? In this paper, we compute a general answer in terms of r-ribbon tableaux. When r=2, this computation gives the number of real points in the fibre of the Wronski map over a real polynomial with purely imaginary roots. More generally, we can compute the number of real points in certain intersections of Schubert varieties. When r divides d(n-d) our main result says that the generic number of C_r-fixed points in the fibre is the number of standard r-ribbon tableaux rectangular shape (n-d)^d. Computing by a different method, we show that the answer in this case is also given by the number of of standard Young tableaux of shape (n-d)^d that are invariant under N/r iterations of jeu de taquin promotion. Together, these two results give a new proof of Rhoades' cyclic sieving theorem for promotion on rectangular tableaux. We prove analogous results for dihedral group actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.