Abstract

Magnetic bubbles are circular magnetic domains that may occur in thin magnetic films with perpendicular magnetic anisotropy (PMA). Because they can form with high topological stability and can be manipulated by external driving forces, magnetic bubbles have been considered as prominent information carriers, which are set to 1 or 0, corresponding to the presence or absence. For practical applications, such information carriers must be written and deleted in a specific area of the magnetic thin film. Herein, we report that the magnetic bubbles can be written and deleted using local magnetic fields. By applying a localized magnetic field from the magnetic tip of a magnetic force microscopy to the stripe domain structures of the PMA multilayer, bubbles can be written at room temperature via the transformation from stripe domains to magnetic bubbles. The deleting of the bubbles in the targeted area demonstrated by the local magnetic field accompanied by a uniform external field. Our findings can provide a key for manipulating information carriers in the spintronic device based on topological magnetic structures such as magnetic skyrmions and bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.