Abstract
In this paper we describe a Hidden Markov Model (HMM) based writer independent handwriting recognition system. A combination of signal normalization preprocessing and the use of invariant features makes the system robust with respect to variability among different writers as well as different writing environments and ink collection mechanisms. A combination of point oriented and stroke oriented features yields improved accuracy. Language modeling constrains the hypothesis space to manageable levels in most cases. In addition a two-pass N-best approach is taken for large vocabularies. We report experimental results for both character and word recognition on several UNIPEN datasets, which are standard datasets of English text collected from around the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.