Abstract

Writer identification problem is one of the important area of research due to its various applications and is a challenging task. The major research on writer identification is based on handwritten English documents with text independent and dependent. However, there is no significant work on identification of writers based on Kannada document. Hence, in this paper, we propose a text-independent method for off-line writer identification based on Kannada handwritten scripts. By observing each individual’s handwriting as a different texture image, a set of features based on Discrete Cosine Transform, Gabor filtering and gray level co-occurrence matrix, are extracted from preprocessed document image blocks. Experimental results demonstrate that the Gabor energy features are more potential than the DCTs and GLCMs based features for writer identification from 20 people.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.