Abstract
Premixed iso-octane and methane-air flames have been ignited in a fan stirred bomb in laminar conditions and turbulent flow fields at 1 and 5 bar. Sheet images of the flames were captured using LIF of OH. In spherically expanding laminar flames, the shape of cusps in the flame surface was shown to change from a dent for flames with positive Markstein numbers to a Huygen type cusp at lower Markstein numbers and finally complete quench was observed at the cusp tip on flames with negative Markstein numbers. The curvatures of turbulent flame edges were calculated and pdf’s generated. The pdf’s were symmetrical about a mean of zero, as the turbulence intensity was increased the pdf’s broadened and became flatter. Turbulent rich iso-octane-air flames (φ = 1.4) exhibited areas of quench in the flame front, the distance between areas of quench was shown to increase as the turbulence intensity was raised. The 5 bar flames exhibited higher curvature than those at 1 bar. The influence of laminar flame and turbulent flow properties on the curvature and hence flame wrinkling were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.