Abstract

Germanium nanomembranes are suitable for flexible electronics, including high-mobility nonsilicon transistors, fast radio-frequency switches, microwave diodes, and high-performance photodetectors. In order to enhance the flexibility of the germanium-based devices, we present a strategy to integrate single-crystalline germanium nanomembranes into a wave-like wrinkled geometry with a uniform periodicity and amplitude on elastomeric substrates. Wrinkled single-crystalline germanium nanomembranes are realized with a reversible and large deformation up to 10%, and the stretchable metal–germanium–metal photodetectors have been demonstrated. Optoelectronic response studies reveal that the wrinkled germanium-based photodetectors exhibit enhanced efficiency of optoelectronic interactions compared with planar photodetectors using flat germanium nanomembranes. Furthermore, the wrinkled photodetectors reveal high response speed and stretchable capability of up to 8.56%. This paper may pave the way for the integration of germanium nanomembranes into the field of flexible/wearable optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.