Abstract
The extreme flexibility-induced wrinkling significantly hampers the promising engineering applications of membranes, while the existing wrinkling-suppression approaches have challenges for area loss, weight increase and interfacial delamination. Here we propose a facile wrinkle-free technique that enables stiffness modulation through spatioselective ultraviolet (UV) exposure, regulates stress distribution to eliminate compressive stresses and achieves robust wrinkle-free membranes. A small-deformation theoretical model with the Marguerre function is implemented to evaluate the wrinkling capability of a stiffness-modulated membrane, the non-gradient particle swarm optimization (PSO) algorithm is performed to obtain the optimal material distribution, and the related robust wrinkle-free performance is verified through both finite-deformation post-buckling analyses and physical experiments. In addition, an empirical wrinkle-free solution is also given without the requirement of excessive optimization. This wrinkle-free approach, with neither area loss, weight increase nor interfacial delamination, provides useful guidance for the research on wrinkle-free membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.