Abstract

We demonstrate wrinkle-bioinspired flexible SERS sensor covered by silver nanowire (AgNWs) network for the detection of pesticide molecules. Compared with the silver film deposition substrates, the wrinkle-bioinspired AgNWs SERS substrates show stronger SERS effect, which were attributed to the electromagnetic field enhancement posed by the relatively high density "hot spots" of AgNWs. In order to investigate the adsorption performance of wrinkle-bioinspired flexible sensors, we measured the corresponding contact angles of AgNWs on the substrate surfaces before and after plasma treatment and found that the AgNWs treated with plasma are more hydrophilic than that without plasma treatment. Additionally, the wrinkle-bioinspired SERS sensors show different SERS activities under different tensile strain, and the 10-6 mol/L concentration of Rhodamine dye (R6G) molecules can be detected by portable Raman spectra, reducing greatly detection cost. The surface plasmon resonance of AgNWs is induced by adjusting the deformation of AgNWs substrate, enhancing the SERS signal. This reliability of wrinkle-bioinspired SERS sensors is further verified by in situ detection of pesticide molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call