Abstract

Pressure has been considered as an effective technique to modulate the structural, electronic, and optical properties of transition metal dichalcogenide (TMDs) materials. Here, by performing in situ high pressure Raman, photoluminescence (PL) and absorption measurements, we systematically investigated the vibrational and electronic properties evolution of monolayer MoSe2 grown on a SiO2/Si substrate under high pressure. When the pressure increased up to 4.84 GPa, an unexpected phonon mode at 367 cm-1 appeared, which was identified as the Raman-inactive A2'' mode and was activated under high pressure. Combined with the analysis of absorption spectroscopy, this phenomenon can be attributed to the pressure-induced wrinkle and near-resonance effects in compressed monolayer MoSe2. Subsequently, A1' split into two peaks after 7.44 GPa, providing further distinct evidence for the pressure-induced wrinkle effect in compressed monolayer MoSe2. Moreover, this wrinkle effect can also lead to a rapid quenching of photoluminescence in monolayer MoSe2. These results suggest that the substrate plays an important role in determining the vibrational and electronic properties of compressed monolayer MoSe2, and can provide valuable information on the electronic and optoelectronic applications of monolayer MoSe2 under extreme conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.