Abstract

The vast majority (>95%) of single-gene mutations in yeast affect not only the expression of the mutant gene, but also the expression of many other genes. These data suggest the presence of a previously uncharacterized "gene expression network"--a set of interactions between genes which dictate gene expression in the native cell environment. Here, we quantitatively analyze the gene expression network revealed by microarray expression data from 273 different yeast gene deletion mutants.(1) We find that gene expression interactions form a robust, error-tolerant "scale-free" network, similar to metabolic pathways(2) and artificial networks such as power grids and the internet.(3-5) Because the connectivity between genes in the gene expression network is unevenly distributed, a scale-free organization helps make organisms resistant to the deleterious effects of mutation, and is thus highly adaptive. The existence of a gene expression network poses practical considerations for the study of gene function, since most mutant phenotypes are the result of changes in the expression of many genes. Using principles of scale-free network topology, we propose that fragmenting the gene expression network via "genome-engineering" may be a viable and practical approach to isolating gene function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.