Abstract

This paper presents a method for analytically generating the boundaries of the wrench-feasible workspace (WFW) for cable robots. This method uses the available net wrench set, which is the set of all wrenches that a cable robot can apply to its surroundings without violating tension limits in the cables. The geometric properties of this set permit calculation of the boundaries of the WFW for planar, spatial, and point-mass cable robots. Complete analytical expressions for the WFW boundaries are detailed for a planar cable robot and a spatial point-mass cable robot. The analytically determined boundaries are verified by comparison with numerical results. Based on this, several workspace properties are shown for point-mass cable robots. Finally, it is shown how this workspace-generation approach can be used to analytically formulate other workspaces

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.