Abstract

Few fluid phenomena are as beautiful, fragile and ephemeral as the crown splash that is created by the impact of an object on a liquid. The crown-shaped phenomenon and the physics behind it have mesmerised and intrigued scientists for over a century, and still the scientific world has not yet uncovered all of the secrets of the splash. This is exemplified in a particularly striking manner in Marston et al. (J. Fluid Mech., vol. 794, 2016, pp. 506–529) where a 6 m tall vacuum chamber is employed to study the splash formed upon impact of a sphere onto a deep liquid pool, at both atmospheric and reduced ambient pressures. They shed light into the classical problem of the surface seal and study the buckling of the splash. With an almost magical touch they devise a method to create a splash without the liquid and the sphere ever coming into contact. The images that accompany the paper – taken with state-of-the-art high-speed cameras – are as stunning as the physics that is uncovered in them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.