Abstract

This paper introduces different types of regression trees for viscosity property forecasting in polymer solutions. Although regression trees have been extensively used in other fields, they do not have been explored to predict the viscosity. One key issue in the context of materials science is to determine a priori which characteristics must be included to describe the prediction model due to a large number of molecular descriptors is obtained. To deal with this, we propose a wrapper method to select the features based on regression trees. Thus, we use regression trees to evaluate different subsets of attributes and build a model from the subset of features that achieved the minimum error. In particular, the performance of eight regression tree algorithms, including both linear and non-linear models, is evaluated and compared to other forecasting approaches using a dataset composed of 64 polymers and 2962 molecular descriptors. The results show that regression trees with nearest neighbors based local models in leaves predict with high accuracy. Moreover, results have been compared to other forecasting approaches such as multivariate linear regression, neural networks and support vector machines showing remarkable improvements in terms of accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call