Abstract
The WRKY family of plant transcription factors controls several types of plant stress responses. Arabidopsis WRKY8, localized to the nucleus, is mainly induced by abscissic acid, H(2)O(2), wounding, Pseudomonas syringae and Botrytis cinerea infection, and aphid and maggot feeding. To determine its biological functions, we isolated loss-of-function T-DNA insertion mutants and generated gain-of-function overexpressing WRKY8 transgenic plants in Arabidopsis. Plants expressing the mutated WRKY8 gene showed increased resistance to P. syringae but slightly decreased resistance to B. cinerea. In contrast, transgenic plants overexpressing WRKY8 were more susceptible to P. syringae infection but more resistant to B. cinerea infection. The contrasting responses to the two pathogens were correlated with opposite effects on pathogen-induced expression of two genes; salicylic acid-regulated PATHOGENESIS-RELATED1 (PR1) and jasmonic acid-regulated PDF1.2. Therefore, our results suggest that WRKY8 is a negative regulator of basal resistance to P. syringae and positive regulator to B. cinerea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.