Abstract

Guard cells integrate various hormone signals and environmental cues to balance plant gas exchange and transpiration. The wounding-associated hormone jasmonic acid (JA) and the drought hormone abscisic acid (ABA) both trigger stomatal closure. In contrast to ABA however, the molecular mechanisms of JA-induced stomatal closure have remained largely elusive. Here, we identify a fast signaling pathway for JA targeting the K+ efflux channel GORK. Wounding triggers both local and systemic stomatal closure by activation of the JA signaling cascade followed by GORK phosphorylation and activation through CBL1-CIPK5 Ca2+ sensor-kinase complexes. GORK activation strictly depends on plasma membrane targeting and Ca2+ binding of CBL1-CIPK5 complexes. Accordingly, in gork, cbl1, and cipk5 mutants, JA-induced stomatal closure is specifically abolished. The ABA-coreceptor ABI2 counteracts CBL1-CIPK5-dependent GORK activation. Hence, JA-induced Ca2+ signaling in response to biotic stress converges with the ABA-mediated drought stress pathway to facilitate GORK-mediated stomatal closure upon wounding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.