Abstract

Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin-binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet-like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound-triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin-sensitive PLPs (TS-PLPs), we incorporated a thrombin-cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin-prompted shape change ability was confirmed, the TS-PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS-PLPs exhibit a wound-triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call