Abstract
Growth factors play a vital role in wound healing, and novel hydrogel carriers suitable for growth factors have always been a research hotspot in the wound healthcare field. In this work, a wound microenvironment-responsive hydrogel drug-loading system was constructed by cross-linking of the internal electron-deficient polyester and bovine serum albumin (BSA) via catalyst-free amino-yne bioconjugation. The slightly acidic microenvironment of wound tissues induces the charge removal of BSA chains, thus releasing the basic fibroblast growth factor (bFGF) loaded through electrostatic action. Besides, the BSA chains in the gel network further endow their excellent biocompatibility and biodegradability, also making them more suitable for bFGF loading. The wound caring evaluation of the hydrogel in the full-thickness skin wound indicated that the protein-based hydrogel significantly promotes the proliferation and differentiation of fibroblasts, collagen accumulation, and epidermal layer stacking, thus significantly shortening the healing process. This strategy paved the way for broadening the application of the growth factors in the wound care field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.