Abstract

Abstract Broccoli ( Brassica oleracea , var. italica ) florets (flower buds) senesced rapidly after harvest at ambient temperatures. ACC (1-aminocyclopropane-1-carboxylic acid) synthase (ACS) was induced rapidly in the cut surface of stem tissue in the first 2 mm thick and the basal portions of curds soon after harvest, leading to an accumulation of ACC. The abundance of one ACS mRNA (BO-ACS1) increased in the first layer, the inner layer of stem (2–4 mm, second layer), and the basal portion of curds, while the transcripts for another (BO-ACS2) increased only in the first layer. Conjugated ACC (malonyl ACC, MACC) levels increased in all portions as senescence progressed. In florets, ACC synthase activity and BO-ACS1 transcripts were detected with no significant changes observed during senescence. ACC levels in florets stayed low throughout the experimental period, whereas MACC levels were much higher than those of ACC. The marked rise in ACC oxidase (ACO) activity in florets was detected almost in parallel with a significant increase in ethylene production. The abundance of ACO transcripts (BO-ACO1 and BO-ACO2) increased concurrently with the rise in ACC oxidase activity. These findings suggest that ACC and ethylene synthesized in the stem in response to wounding may have involved the enhanced activity of ACC oxidase and increased abundance of its transcripts in florets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.